Перевод: с английского на все языки

со всех языков на английский

со многими переменными

  • 1 multivariable

    Универсальный англо-русский словарь > multivariable

  • 2 multivariable system

    Универсальный англо-русский словарь > multivariable system

  • 3 multivariate

    Универсальный англо-русский словарь > multivariate

  • 4 multivariable system

    Большой англо-русский и русско-английский словарь > multivariable system

  • 5 multivariable system

    система со многими переменными, многомерная система

    Англо-русский словарь технических терминов > multivariable system

  • 6 equation with many unknowns

    Универсальный англо-русский словарь > equation with many unknowns

  • 7 multivariate calibration

    Универсальный англо-русский словарь > multivariate calibration

  • 8 statistical analysis for univariate and multivariate correlations

    Универсальный англо-русский словарь > statistical analysis for univariate and multivariate correlations

  • 9 the statistical analysis for univariate and multivariate correlations

    Универсальный англо-русский словарь > the statistical analysis for univariate and multivariate correlations

  • 10 multivariable system

    система со многими переменными; многосвязная система

    English-Russian dictionary of computer science and programming > multivariable system

  • 11 multivariable

    с многими переменными

    multivariable query
    multivariable system

    Англо-русский словарь по робототехнике > multivariable

  • 12 multivariable system

    система с многими переменными, многосвязная система

    Англо-русский словарь по робототехнике > multivariable system

  • 13 multivariable system

    мат.
    система со многими переменными, многомерная система

    English-Russian scientific dictionary > multivariable system

  • 14 multivariable system

    English-Russian base dictionary > multivariable system

  • 15 multivariable system

    English-Russian dictionary of electronics > multivariable system

  • 16 DP

    1. процессор для обработки данных
    2. проект предложения
    3. приоритет при отбрасывании
    4. предварительное сообщение
    5. порт пункта назначения
    6. перепад давлений
    7. обработка данных
    8. импульс набора номера
    9. дистанционная защита
    10. динамическое программирование
    11. выявленный загрязнитель воздуха, не имеющий установленных норм по предельно-допустимой концентрации

     

    выявленный загрязнитель воздуха, не имеющий установленных норм по предельно-допустимой концентрации

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    динамическое программирование

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    динамическое программирование
    Раздел математического программирования, совокупность приемов, позволяющих находить оптимальные решения, основанные на вычислении последствий каждого решения и выработке оптимальной стратегии для последующих решений. Процессы принятия решений, которые строятся по такому принципу, называются многошаговыми процессами. Математически оптимизационная задача строится в Д. п. с помощью таких соотношений, которые последовательно связаны между собой: например, полученный результат для одного года вводится в уравнение для следующего (или, наоборот, для предыдущего), и т.д. Таким образом, можно получить на вычислительной машине результаты решения задачи для любого избранного момента времени и «следовать» дальше. Д.п. применяется не обязательно для задач, связанных с течением времени. Многошаговым может быть и процесс решения вполне «статической» задачи. Таковы, например, некоторые задачи распределения ресурсов. Общим для задач Д.п. является то, что переменные в модели рассматриваются не вместе, а последовательно, одна за другой. Иными словами, строится такая вычислительная схема, когда вместо одной задачи со многими переменными строится много задач с малым числом (обычно даже одной) переменных в каждой. Это значительно сокращает объем вычислений. Однако такое преимущество достигается лишь при двух условиях: когда критерий оптимальности аддитивен, т.е. общее оптимальное решение является суммой оптимальных решений каждого шага, и когда будущие результаты не зависят от предыстории того состояния системы, при котором принимается решение. Все это вытекает из принципа оптимальности Беллмана (см. Беллмана принцип оптимальности), лежащего в основе теории Д.п. Из него же вытекает основной прием — нахождение правил доминирования, на основе которых на каждом шаге производится сравнение вариантов будущего развития и заблаговременное отсеивание заведомо бесперспективных вариантов. Когда эти правила обращаются в формулы, однозначно определяющие элементы последовательности один за другим, их называют разрешающими правилами. Процесс решения при этом складывается из двух этапов. На первом он ведется «с конца»: для каждого из различных предположений о том, чем кончился предпоследний шаг, находится условное оптимальное управление на последнем шаге, т.е. управление, которое надо применить, если предпоследний шаг закончился определенным образом. Такая процедура проводится до самого начала, а затем — второй раз — выполняется от начала к концу, в результате чего находятся уже не условные, а действительно оптимальные шаговые управления на всех шагах операции (см. пример в статье Дерево решений). Несмотря на выигрыш в сокращении вычислений при использовании подобных методов по сравнению с простым перебором возможных вариантов, их объем остается очень большим. Поэтому размерность практических задач Д.п. всегда незначительна, что ограничивает его применение. Можно выделить два наиболее общих класса задач, к которым в принципе мог бы быть применим этот метод, если бы не «проклятие размерности». (На самом деле на таких задачах, взятых в крайне упрощенном виде, пока удается лишь демонстрировать общие основы метода и анализировать экономико-математические модели). Первый — задачи планирования деятельности экономического объекта (предприятия, отрасли и т.п.) с учетом изменения потребности в производимой продукции во времени. Второй класс задач — оптимальное распределение ресурсов между различными направлениями во времени. Сюда можно отнести, в частности, такую интересную задачу: как распределить урожай зерна каждого года на питание и на семена, чтобы в сумме за ряд лет получить наибольшее количество хлеба?
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

     

    дистанционная защита
    -

    [В.А.Семенов Англо-русский словарь по релейной защите]

    дистанционная защита
    Защита с относительной селективностью, срабатывание и селективность которой зависят от измерения в месте ее установки электрических величин, по которым путем сравнения с уставками зон оценивается эквивалентная удаленность повреждения
    [Разработка типовых структурных схем микропроцессорных устройств РЗА на объектах ОАО "ФКС ЕЭС". Пояснительная записка. Новосибирск 2006 г.]

    дистанционная защита
    Защита, чье действие и селективность основаны на локальном измерении электрических величин, по которым рассчитываются эквивалентные расстояния до места повреждения в пределах установленных зон.
    [ http://docs.cntd.ru/document/1200069370]

    дистанционная защита
    Защита, принцип действия и селективность которой основаны на измерении в месте установки защиты электрических величин, характеризующих повреждение, и сравнении их с уставками зон.
    [Циглер Г. Цифровая дистанционная защита: принципы и применение. М.: Энергоиздат. 2005]

    EN

    distance protection
    distance relay (US)

    a non-unit protection whose operation and selectivity depend on local measurement of electrical quantities from which the equivalent distance to the fault is evaluated by comparing with zone settings
    [IEV ref 448-14-01]

    FR

    protection de distance
    protection à sélectivité relative de section dont le fonctionnement et la sélectivité dépendent de la mesure locale de grandeurs électriques à partir desquelles la distance équivalente du défaut est évaluée par comparaison avec des réglages de zones
    [IEV ref 448-14-01]

    Дистанционные защиты применяются в сетях сложной конфигурации, где по соображениям быстродействия и чувствительности не могут использоваться более простые максимальные токовые и токовые направленные защиты.
    Дистанционной защитой определяется сопротивление (или расстояние - дистанция) до места КЗ, и в зависимости от этого защита срабатывает с меньшей или большей выдержкой времени. Следует уточнить, что современные дистанционные защиты, обладающие ступенчатыми характеристиками времени, не измеряют каждый раз при КЗ значение указанного выше сопротивления на зажимах измерительного органа и не устанавливают в зависимости от этого большую или меньшую выдержку времени, а всего лишь контролируют зону, в которой произошло повреждение. Время срабатывания защиты при КЗ в любой точке рассматриваемой зоны остается неизменным. Каждая защита выполняется многоступенчатой, причем при КЗ в первой зоне, охватывающей 80-85% длины защищаемой линии, время срабатывания защиты не более 0,15 с. Для второй зоны, выходящей за пределы защищаемой линии, выдержка времени на ступень выше и колеблется в пределах 0,4-0,6 с. При КЗ в третьей зоне выдержка времени еще более увеличивается и выбирается так же, как и для направленных токовых защит.
    На рис. 7.15 показан участок сети с двухсторонним питанием и приведены согласованные характеристики выдержек времени дистанционных защит (ДЗ). При КЗ, например, в точке К1 - первой зоне действия защит ДЗ3 и ДЗ4 - они сработают с минимальным временем соответственно t I3 и t I4. Защиты ДЗ1 и ДЗ6 также придут в действие, но для них повреждение будет находиться в III зоне, и они могут сработать как резервные с временем t III1 и t III6 только в случае отказа в отключении линии БВ собственными защитами.


    4610
    Рис. 7.14. Размещение токовых направленных защит нулевой последовательности на участке сетей и характеристики выдержек времени защит:
    Р31-Р36 - комплекты токовых направленных защит нулевой последовательности


    4611
    Рис. 7.15. Защита участка сети дистанционными защитами и характеристики выдержек времени этих защит:
    ДЗ1-ДЗ6 - комплекты дистанционных защит; l3 и l4 - расстояния от мест установки защит до места повреждения


    При КЗ в точке К2 (шины Б) оно устраняется действием защит ДЗ1 и ДЗ4 с временем t II1 и t II4.
    Дистанционная защита - сложная защита, состоящая из ряда элементов (органов), каждый из которых выполняет определенную функцию. На рис. 7.16 представлена упрощенная схема дистанционной защиты со ступенчатой характеристикой выдержки времени. Схема имеет пусковой и дистанционный органы, а также органы направления и выдержки времени.
    Пусковой орган ПО выполняет функцию отстройки защиты от нормального режима работы и пускает ее в момент возникновения КЗ. В качестве такого органа в рассматриваемой схеме применено реле сопротивления, реагирующее на ток I р и напряжение U p на зажимах реле.
    Дистанционные (или измерительные) органы ДО1 и ДО2 устанавливают меру удаленности места КЗ.
    Каждый из них выполнен при помощи реле сопротивления, которое срабатывает при КЗ, если
    4612
    где Z p - сопротивление на зажимах реле; Z - сопротивление защищаемой линии длиной 1 км; l - длина участка линии до места КЗ, км; Z cp - сопротивление срабатывания реле.
    Из приведенного соотношения видно, что сопротивление на зажимах реле Z p пропорционально расстоянию l до места КЗ.
    Органы выдержки времени ОВ2 и ОВ3 создают выдержку времени, с которой защита действует на отключение линии при КЗ во второй и третьей зонах. Орган направления OHM разрешает работу защиты при направлении мощности КЗ от шин в линию.
    В схеме предусмотрена блокировка БН, выводящая защиту из действия при повреждениях цепей напряжения, питающих защиту. Дело в том, что если при повреждении цепей напряжение на зажимах защиты Uр=0, то Zp=0. Это означает, что и пусковой, и дистанционный органы могут сработать неправильно. Для предотвращения отключения линии при появлении неисправности в цепях напряжения блокировка снимает с защиты постоянный ток и подает сигнал о неисправности цепей напряжения. Оперативный персонал в этом случае обязан быстро восстановить нормальное напряжение на защите. Если по какой-либо причине это не удается выполнить, защиту следует вывести из действия переводом накладки в положение "Отключено".

    4613
    Рис. 7.16. Принципиальная схема дистанционной защиты со ступенчатой характеристикой выдержки времени

    Работа защиты.

    При КЗ на линии срабатывают реле пускового органа ПО и реле органа направления OHM. Через контакты этих реле плюс постоянного тока поступит на контакты дистанционных органов и на обмотку реле времени третьей зоны ОВ3 и приведет его в действие. Если КЗ находится в первой зоне, дистанционный орган ДО1 замкнет свои контакты и пошлет импульс на отключение выключателя без выдержки времени. При КЗ во второй зоне ДО1 работать не будет, так как значение сопротивления на зажимах его реле будет больше значения сопротивления срабатывания. В этом случае сработает дистанционный орган второй зоны ДО2, который запустит реле времени ОВ2. По истечении выдержки времени второй зоны от реле ОВ2 поступит импульс на отключение линии. Если КЗ произойдет в третьей зоне, дистанционные органы ДО1 и ДО2 работать не будут, так как значения сопротивления на их зажимах больше значений сопротивлений срабатывания. Реле времени ОВ3, запущенное в момент возникновения КЗ контактами реле OHM, доработает и по истечении выдержки времени третьей зоны пошлет импульс на отключение выключателя линии. Дистанционный орган для третьей зоны защиты, как правило, не устанавливается.
    В комплекты дистанционных защит входят также устройства, предотвращающие срабатывание защит при качаниях в системе.

    [ http://leg.co.ua/knigi/raznoe/obsluzhivanie-ustroystv-releynoy-zaschity-i-avtomatiki-4.html]

     

    Тематики

    Синонимы

    EN

    DE

    • Distanzschutz, m

    FR

     

    импульс набора номера

    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    EN

     

    обработка данных
    Систематическое осуществление операций над данными.
    [ИСО/МЭК 2382-1]
    [ ГОСТ Р 52292-2004]

    обработка данных
    Технологическая операция, в результате которой изменяет свое значение хотя бы один из показателей, характеризующих состояние данных (объем данных при этом не изменяется).
    [ ГОСТ Р 51170-98]

    обработка данных
    - Любое преобразование данных при решении конкретной задачи.
    - Работа, выполняемая компьютером.
    [ http://www.morepc.ru/dict/]

    обработка данных
    Процесс приведения данных к виду, удобному для использования. Независимо от вида информации, которая должна быть получена, и типа оборудования любая система О.д. выполняет три основные группы операций: подбор исходных, входных данных (см. Сбор данных), собственно их обработку (в процессе которой система оперирует промежуточными данными), получение и анализ результатов, т.е. выходных данных). Выполняет ли эти операции человек или машина (см. Автоматизированная система обработки данных), все равно они следуют при этом заданному алгоритму (для человека это могут быть инструкция, методика, а для ЭВМ — программа). Важным процессом О.д. является агрегирование, укрупнение их от одной к другой ступени хозяйственной иерархии. Проверка статистических данных, приведение их к сопоставимому виду, сложение, вычитание и другие арифметические операции — тоже процессы О.д. Можно назвать также выборку, отсечение ненужных данных, запоминание, изменение последовательности (упорядочение), классификацию и многие другие. О.д. предшествует во времени принятию решений. Она может производиться эпизодически, периодически (т.е. через заданные промежутки времени), в АСУ — также в реальном масштабе времени. Последнее означает, что О.д. производится с той же скоростью, с какой протекают описываемые ими события, иначе говоря — со скоростью, достаточной для анализа событий и управления их последующим ходом.
    [ http://slovar-lopatnikov.ru/]


    Тематики

    EN

     

    перепад давлений

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    порт пункта назначения
    (МСЭ-T G.7041/ Y.1303).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    предварительное сообщение

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

     

    приоритет при отбрасывании
    (МСЭ-T G.8010/ Y.1306).
    [ http://www.iks-media.ru/glossary/index.html?glossid=2400324]

    Тематики

    • электросвязь, основные понятия

    EN

     

    проект предложения

    [А.С.Гольдберг. Англо-русский энергетический словарь. 2006 г.]

    Тематики

    EN

     

    процессор для обработки данных

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > DP

  • 17 dynamic programming

    1. динамическое программирование

     

    динамическое программирование

    [Е.С.Алексеев, А.А.Мячев. Англо-русский толковый словарь по системотехнике ЭВМ. Москва 1993]

    динамическое программирование
    Раздел математического программирования, совокупность приемов, позволяющих находить оптимальные решения, основанные на вычислении последствий каждого решения и выработке оптимальной стратегии для последующих решений. Процессы принятия решений, которые строятся по такому принципу, называются многошаговыми процессами. Математически оптимизационная задача строится в Д. п. с помощью таких соотношений, которые последовательно связаны между собой: например, полученный результат для одного года вводится в уравнение для следующего (или, наоборот, для предыдущего), и т.д. Таким образом, можно получить на вычислительной машине результаты решения задачи для любого избранного момента времени и «следовать» дальше. Д.п. применяется не обязательно для задач, связанных с течением времени. Многошаговым может быть и процесс решения вполне «статической» задачи. Таковы, например, некоторые задачи распределения ресурсов. Общим для задач Д.п. является то, что переменные в модели рассматриваются не вместе, а последовательно, одна за другой. Иными словами, строится такая вычислительная схема, когда вместо одной задачи со многими переменными строится много задач с малым числом (обычно даже одной) переменных в каждой. Это значительно сокращает объем вычислений. Однако такое преимущество достигается лишь при двух условиях: когда критерий оптимальности аддитивен, т.е. общее оптимальное решение является суммой оптимальных решений каждого шага, и когда будущие результаты не зависят от предыстории того состояния системы, при котором принимается решение. Все это вытекает из принципа оптимальности Беллмана (см. Беллмана принцип оптимальности), лежащего в основе теории Д.п. Из него же вытекает основной прием — нахождение правил доминирования, на основе которых на каждом шаге производится сравнение вариантов будущего развития и заблаговременное отсеивание заведомо бесперспективных вариантов. Когда эти правила обращаются в формулы, однозначно определяющие элементы последовательности один за другим, их называют разрешающими правилами. Процесс решения при этом складывается из двух этапов. На первом он ведется «с конца»: для каждого из различных предположений о том, чем кончился предпоследний шаг, находится условное оптимальное управление на последнем шаге, т.е. управление, которое надо применить, если предпоследний шаг закончился определенным образом. Такая процедура проводится до самого начала, а затем — второй раз — выполняется от начала к концу, в результате чего находятся уже не условные, а действительно оптимальные шаговые управления на всех шагах операции (см. пример в статье Дерево решений). Несмотря на выигрыш в сокращении вычислений при использовании подобных методов по сравнению с простым перебором возможных вариантов, их объем остается очень большим. Поэтому размерность практических задач Д.п. всегда незначительна, что ограничивает его применение. Можно выделить два наиболее общих класса задач, к которым в принципе мог бы быть применим этот метод, если бы не «проклятие размерности». (На самом деле на таких задачах, взятых в крайне упрощенном виде, пока удается лишь демонстрировать общие основы метода и анализировать экономико-математические модели). Первый — задачи планирования деятельности экономического объекта (предприятия, отрасли и т.п.) с учетом изменения потребности в производимой продукции во времени. Второй класс задач — оптимальное распределение ресурсов между различными направлениями во времени. Сюда можно отнести, в частности, такую интересную задачу: как распределить урожай зерна каждого года на питание и на семена, чтобы в сумме за ряд лет получить наибольшее количество хлеба?
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > dynamic programming

  • 18 correlation analysis

    1. корреляционный анализ (в экономике)
    2. корреляционный анализ

     

    корреляционный анализ

    [Л.Г.Суменко. Англо-русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.]

    Тематики

    EN

     

    корреляционный анализ (в экономике)
    Ветвь математической статистики, изучающая взаимосвязи между изменяющимися величинами (корреляция — соотношение, от латинского слова correlatio). Взаимосвязь может быть полная (т.е. функциональная) и неполная, когда зависимость связанных величин искажена влиянием посторонних, дополнительных факторов. Примером функциональной связи служит выпуск и потребление продукции, когда она дефицитна: во сколько раз больше выпуск, во столько раз больше продажа (все распродается, ничего не остается в запасе). Примером корреляционной связи может служить соотношение стажа рабочих и их производительности труда. Известно, что в среднем производительность труда рабочих тем выше, чем больше их стаж. Однако бывает, и нередко, что молодой рабочий (из-за влияния таких дополнительных факторов, как образование, здоровье и т.д.) работает лучше пожилого. Чем больше влияние этих дополнительных факторов, тем менее тесна связь между стажем и выработкой, и наоборот. В таком случае коэффициент корреляции (см. Корреляция) между двумя величинами — стажем и производительностью — занимает промежуточное положение между нулем и единицей в зависимости от силы (тесноты) взаимосвязи. Именно такие взаимосвязи изучает К.а. Он может рассматривать и более сложные корреляционные связи — не между двумя переменными (это называется парной корреляцией), как в описанном случае, а между многими. Тогда имеют дело с множественной корреляцией. При изучении экономических явлений методами К.а. необходимо тщательно выявлять причинные зависимости, лежащие в основе корреляции наблюдаемых показателей. Отсутствие причинной связи между явлениями, хотя корреляционная связь между ними установлена, называется ложной корреляцией. Она часто встречается, например, при анализе временных рядов, когда параллельно снижаются или повышаются показатели, на самом деле совершенно не зависящие друг от друга. Рассматриваемые связи математически описываются корреляционными уравнениями (другое название — уравнение регрессии). Например, простейшим корреляционным уравнением связи между двумя переменными является уравнение прямой вида y=a+bx. При функциональной связи такая прямая точно соответствовала бы действительным значениям зависимой переменной. Если представить такую связь графически, то она проходила бы через все наблюдаемые точки y. При корреляции же соответствие, как указано, соблюдается лишь приблизительно, в общем, и точки наблюдений расположены не по прямой, а в виде «облачка», более или менее вытянутого в некотором направлении. Поэтому приходится специальными приемами находить ту линию, которая наилучшим образом отражает корреляционную зависимость, т.е. направление «облачка» (рис.К.1). Распространенный способ решения этой задачи — метод наименьших квадратов отклонений наблюдаемых значений y от значений, рассчитываемых по формуле корреляционного уравнения. Особенно широко применяется К.а. в теории производственных функций, в разработке разного рода нормативов на производстве, а также в анализе спроса и потребления. Рис. К.1 Корреляционные зависимости а — переменные x и y не коррелируют; б — слабая отрицательная корреляция; в — сильная положительная линейная корреляция
    [ http://slovar-lopatnikov.ru/]

    Тематики

    EN

    Англо-русский словарь нормативно-технической терминологии > correlation analysis

  • 19 non-insured

    1. прил.
    тж. noninsured страх. = uninsured
    2. сущ.
    страх. незастрахованный (лицо, не имеющее страховки)

    As for the non-insureds, the study found that non-insurance is closely correlated to the indicators of financial position and many demographic variables. — Что касается незастрахованных лиц, то исследование показало, что отсутствие страховки тесно коррелирует с показателями финансового положения и многими демографическими переменными.

    Syn:
    uninsured 2. 2)
    Ant:
    See:

    Англо-русский экономический словарь > non-insured

  • 20 relation among variables

    Универсальный англо-русский словарь > relation among variables

См. также в других словарях:

  • Номография — (от греч. nómos закон и ...графия)         раздел математики, объединяющий теорию и практические методы построения номограмм специальных чертежей, являющихся изображениями функциональных зависимостей. Особенность номограмм заключается в том, что… …   Большая советская энциклопедия

  • Номограмма — Диаграмма Вольперта Смита Номограмма (греч. νομοσ …   Википедия

  • МОРСКАЯ БИОЛОГИЯ — наука, изучающая организмы морей и океанов. Морская биология обширная дисциплина, включающая множество направлений, поэтому сам термин понимается по разному в зависимости от того, кто им пользуется. Морским биологом можно назвать специалиста,… …   Энциклопедия Кольера

  • "ОБЩАЯ ТЕОРИЯ СИСТЕМ" — (General System Theory) специально научная и логико методологич. концепция, предложенная австр. биологом Л. Берталанфи (р. 1901). Осн. цель О. т. с. разработка аппарата понятий, позволяющего анализировать объекты как системы. О. т. с. возникла у… …   Философская энциклопедия

  • Копула — (лат. Copula)  это многомерная функция распределения, определённая на мерном единичном кубе , такая что каждое её маргинальное распределение равномерно на интервале . Теорема Склара заключается в следующем. Для произвольной двумерной… …   Википедия

  • ОБЩАЯ ТЕОРИЯ СИСТЕМ —     ОБЩАЯ ТЕОРИЯ СИСТЕМ специально научная и логико методологическая концепция исследований объектов, представляющих собой системы. Общая теория систем тесно связана с системным подходом и является конкретизацией и логико методологическим… …   Философская энциклопедия

  • Ермаков, Василий Петрович — ординарный профессор киевского университета по кафедре чистой математики и член корреспондент академии наук; род. в 1845 г. В 1868 г., по получении степени кандидата, был оставлен при университете св. Владимира для приготовления к деятельности… …   Большая биографическая энциклопедия

  • Перевощиков, Димитрий Матвеевич — математик, писатель, экстраординарный академик Императорской Академии Наук, брат Василия Матвеевича Перевощикова; родился 17 го апреля 1788 г. по одним известиям в г. Саранске, а по другим в Шишкееве (теперь заштатном городе) Пензенской губернии …   Большая биографическая энциклопедия

  • Ермаков — (Василий Петрович) ординарный профессор киевского университета по кафедре чистой математики и член корреспондент академии наук; род. в 1845 г. В 1868 г., по получении степени кандидата, был оставлен при университете св. Владимира для… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • БЛОК-ПЕРЕМЕННАЯ — (от нем. Block, голл. blok) англ. controlled variable; нем. Blockvariable. Переменная в экспериментальном исследовании (в более широком понимании в любом анализе с многими переменными), воздействие к рой на результаты опыта контролируется с целью …   Энциклопедия социологии

  • Ермаков, Василий Петрович — Василий Петрович Ермаков Дата рождения: 27 февраля (11 м …   Википедия

Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»